The Surgical Management of Essential Tremor

International Essential Tremor Foundation
“Learning About Essential Tremor: Diagnosis and Treatment Options”
Albuquerque, NM
April 24, 2010

Andrew K. Metzger, MD
Neurosurgeon
Southwest Neurosurgical Associates
www.swnsa.com

1. The history of surgery for movement disorders
2. Details of the current surgical procedure (deep brain stimulation),
 – Step-by-step description
 – Results
 – Risks

Overview:

Historical Aspects

Target:
- Pyramidal
- Basal ganglia

Technique:
- Open
- Stereotactic
- Lesioning
- Stimulation
- Ventriculogram/atlas
- CT/MRI computer planning
- Microelectrode rec
Historical Aspects

- Pyramidal era – 1940’s
- Tremor relief at the expense of strength

Target:
- Pyramidal
- Basal ganglia

Technique:
- Open
- Stereotactic
- Lesioning
- Stimulation
- Ventriculogram/atlas
- CT/MRI computer planning
- Microelectrode rec
Historical Aspects

- Basal ganglia and thalamic era – 1950’s
- Cooper’s “surgical accident” - 1952

- Meyer’s “pallidoansotomy” - 1952
- Relief of tremor, rigidity, bradykinesia without weakness

- Development of stereotactic techniques to make surgery less invasive
 - Horsley and Clarke – animal device (1908)
 - Spiegel and Wycis – human frame (1946)
Development of stereotactic techniques to make surgery less invasive

- Horsley and Clarke – animal device (1908)
- Spiegel and Wycis – human frame (1946)

Development of stereotactic techniques to make surgery less invasive

- Horsley and Clarke – animal device (1908)
- Spiegel and Wycis – human frame (1946)

Development of stereotactic techniques to make surgery less invasive

- Stereotactic atlases
- Pneumoencephalography

Development of stereotactic techniques

- Lars Leksell
 - Target centered frame
 - Ventral posterior pallidotomy
Development of stereotactic techniques
- Lars Leksell
 - Target centered frame
 - Ventral posterior pallidotomy

Surgical procedures virtually abandoned in 1968 when L-Dopa became available for PD

- Re-discovery of Leksell's ventral posterior pallidotomy
- Significant improvement in bradykinesia, rigidity, dyskinesia

Re-birth of interest in 1990's (Laitenen)
Deep Brain Stimulation

- **History**
 - Initially used for pain control in 1960s
 - Clinical trials for movement disorders 1990s
 - FDA approved for ET in 1997, PD in 2002

- **Advantages over lesioning**
 - Adjustable
 - Reversible
 - Bilateral placement

Overview:

- The history of surgery for movement disorders
- Details of the current surgical procedure (deep brain stimulation),
 - Step-by-step description
 - Results
 - Risks

Surgical Procedure

1. Frame placement
2. Imaging
3. Treatment planning
4. Operating room

1. Frame placement
2. Imaging
3. Treatment planning
4a. DBS placement
Surgical Procedure

Overview:
1. Frame placement
2. Imaging
3. Treatment planning
4. Operating room
4b. IPG placement

Stereotactic frame placement (sedation with IV Versed, local anesthesia)

Imaging
- MRI as outpatient without frame
- CT morning of surgery with frame

Treatment planning:
- MRI and CT image sets loaded onto graphic computer workstation in OR
- Images registered to fiducial markers allowing precise translation of brain anatomy into frame coordinates
Surgical Procedure

- Treatment planning:
 - Targets (right and left Vim) chosen based on “indirect” and “direct” techniques

- Operating room:
 - Positioning, preparation
 - Arterial line, foley catheter

- Operating room:
 - Frame coordinates set to entry and target
Surgical Procedure

- Operating room:
 - Entry burr hole (nickel size) created

- Operating room:
 - DBS lead securing device placed in burr hole

- Operating room:
 - Microelectrode recording

- Operating room:
 - Microelectrode recording

- Operating room:
 - Microelectrode recording

- Operating room:
 - DBS implant, test stimulation
Surgical Procedure

• Operating room:
 – DBS implant, test stimulation

Before DBS
L DBS test stimulation

Surgical Procedure

• Repeat the same steps for opposite side

Surgical Procedure

• Second surgery:
 – IPG implant 3 weeks later under general anesthesia

Second surgery

• Either a unilateral IPG (Kinetra) that runs both DBS leads

Admission to Lovelace - Downtown:

• Most patients stay in ICU overnight
 – One-on-one nursing for close neurologic observation
 – Close monitoring of blood pressure
Second surgery
• …or bilateral IPGs (Soletra) that each run a DBS lead

Surgical Procedure
• Second surgery:
 – Discharge home same day
 – Programming of stimulator by Dr. Marjama-Lyons as an outpatient

Overview:
• The history of surgery for movement disorders
• Details of the current surgical procedure (deep brain stimulation),
 – Step-by-step description
 – Results
 – Risks

Surgical Procedure
• Results
 – 84% tremor suppression

Overview:
• The history of surgery for movement disorders
• Details of the current surgical procedure (deep brain stimulation),
 – Step-by-step description
 – Results
 – Risks

Surgical Procedure
• Results
 – 85% tremor suppression
Surgical Procedure

- Risks of the procedure:
 - Brain hemorrhage
 - Infection
 - DBS ineffective
 - Mechanical failure
 - Dysarthria
 - Dysequilibrium
- IPG will need replacement in 3 to 5 yrs

Activar Tremor Control Therapy

- Availability and Insurance Coverage
 - Available in Europe and Canada since 1995
 - US FDA approval received in 1997
 - Medicare has policies in all 50 states
 - Most commercial insurers cover the device

Questions?

Dr. Jill Marjama-Lyons

797-3771

Thank You!